多边形网格上不可压缩的 Navier-Stokes 方程的稳健不连续 Galerkin 方法-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

多边形网格上不可压缩的 Navier-Stokes 方程的稳健不连续 Galerkin 方法

2022.06.04

投稿:龚惠英部门:理学院浏览次数:

活动信息

时间: 2022年06月08日 15:00

地点: 腾讯会议

报告题目 (Title): A pressure-robust staggered DG method for the incompressible Navier-Stokes equations on polygonal meshes (多边形网格上不可压缩的 Navier-Stokes 方程的稳健不连续 Galerkin 方法)

报告人 (Speaker):Lina Zhao (City University of Hong Kong)

报告时间:2022年06月08日(周三) 15:00

参会方式:腾讯会议 会议ID: 679-858-620 密码: 无

邀请人:潘晓敏

主办部门:理学院数学系

报告摘要:

In this talk, I will introduce a novel pressure-robust staggered discontinuous Galerkin method for the incompressible Navier-Stokes equations on general polygonal meshes. The devising of the method hinges on a carefully designed finite element pair and nonlinear convective term, which ensures pressure-robustness. The optimal convergence estimates for all the variables in L2 norm are proved under a suitable smallness condition. In particular, the unique solvability and convergence error estimates are proved to be independent of the irrotational part of the source term. Numerical experiments will be presented to validate the theoretical findings and demonstrate the superior performances of the proposed method, especially for problems with high Reynolds number or zero velocity.

黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女